癫痫杂志

癫痫杂志

后头部癫痫发作中的痫性眼球运动

查看全文

目的研究痫性眼球运动在后头部癫痫定位诊断中的临床意义。 方法纳入12例以痫性眼球运动为初始临床征象的后头部癫痫病例作为研究对象, 所有患者均进行立体定向颅内电极植入, 并记录发作期立体定向脑电图(SEEG), 通过对痫性眼球运动症状学、发作期SEEG受累脑区的聚类和相关分析, 获得眼球运动和受累皮层区的相关性。 结果脑皮层聚类分析显示, 顶枕沟(Parieto-occipital sulcus, POS)与后扣带回(Posterior cingulate sulcus, PCC)、楔前叶后部(Posterior precuneus, PrCp)聚为一类, 为内侧组; 顶内沟(Intraparietal sulcus, IPS)与顶上小叶后部(Posterior part of superior parietal lobule, SPLp)聚为一类, 为中间组; 枕前沟(Anterior occipital sulcus, AOS)与颞叶后部、枕叶皮层聚为一类, 为外侧组。内侧组和中间组皮层与强迫性眼球注视相关性显著; 外侧组皮层与同侧偏转、双眼辐辏运动相关性显著。对侧偏转出现概率最高, 但与POS、IPS和AOS无显著相关性, 与缘上回、前顶叶皮层具有显著相关性。强迫性眼球注视见于4例患者, 且其中3例致痫区均包含IPS, 另1例致痫区位于顶叶内侧面; 强迫性眼球注视与IPS、枕内沟(Intra-occipital sulcus, IOS)、顶上小叶前部和后部(SPLa、SPLp)、POS、dPCC背侧部及腹侧部(dorsal and ventral part of PCC, dPCC & vPCC)相关性显著。同侧偏转、双眼辐辏运动与AOS及其邻近皮层相关。 结论强迫性眼球注视是后头部癫痫发作中最重要的眼球运动症状, 与IPS、POS受累关系密切; 对侧偏转是在后头部癫痫发作中非常常见的眼球运动症状, 目前尚未发现其与后头部眼球运动皮层的相关性, 考虑为前头部眼球运动区受累所致; 癫痫发作导致的同侧偏转、双眼辐辏运动为平稳跟踪性眼球运动系统受累, 特别是AOS及其邻近皮层受累所致。

ObjectiveTo identify the clinical significance of epileptic eye movement for localization of posterior epileptic seizures. MethodsThere were 12 posterior epileptic patients, who were undertaken the detailed presurgical evaluation and ictal SEEG recording, and the epileptogenic zone of whom was confirmed restricted within posterior cortex through the boarder of epileptic cortical resection and the result of epileptic surgery, included in the research. ResultsThe cluster analysis of posterior cortical area of interest showed that parieto-occipital sulcus (POS) with the adjacent cortical areas belonged to the Medial Group; intraparietal sulcus (IPS) with the adjacent areas belonged to the Intermediate Group; and the Lateral Group included anterior occipital sulcus (AOS) and posterior temporal cortex. Eyes forced stare had the significant correlation with IPS, POS and related cortical group. Contraversive eye deviation had no significant correlation with cortical eye field with the related cortical areas. ConclusionsForced eye stare was significant eye movement in posterior epilepsy, and had significant correlation with IPS and POS. Ipsiversive eye deviation and convergence binocular movement were rare semiology in posterior epilepsy, and AOS had significant correlation with the two type of epileptic eyes movement.

关键词: 痫性眼球运动; 后头部癫痫; 强迫性眼球注视; 偏转发作; 皮层眼区

Key words: Epileptic eye movement; Posterior epilepsy; Forced eye stare; Epileptic version; Cortical eye field

引用本文: 张玮, 龙绮婷, 郭强, 陈俊喜, 刘兴洲. 后头部癫痫发作中的痫性眼球运动. 癫痫杂志, 2016, 2(5): 406-413. doi: 10.7507/2096-0247.20160072 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Wyllie E, Luders HO, Morris HH, et al. The lateralizing significance of versive head and eye movements during epileptic seizures. Neurology, 1986, 21(3):109-121.
2. Lüders HO, Acharya J, Baumgartner C, et al. Semiological seizure classification. Epilepsia, 1998, 29 (9):1006-1013.
3. Loddenkemper T, Kotagal P. Lateralizing signs during seizures in focal epilepsy. Epilepsy and Behavior, 2005, 7(1):1-17.
4. Olbrich A, Urak L, Gröppel G, et al. Seimology of temporal lobe epilepsy in children and adolescents value in lateralizing the seizure onset zone. Epilepsy Research, 2002, 48(11):103-110.
5. Boesebeck F, Schulz R, May T, et al. Lateralizing semiology predicts the seizure outcome after epilepsy surgery in the posterior cortex. Brain, 2002, 125(12):2320-2331.
6. Kellinghaus C, Lüders HO. Frontal lobe epilepsy. Epileptic Disorder, 2004, 6(1):223-239.
7. Bonelli SB, Lurger S, Zimprich F, et al. Clinical seizure lateralization in frontal lobe epilepsy. Epilepsia, 2007, 48 (3):517-523.
8. Tijssen CC, BastiaensenLAK, Voskuil PHA. Epileptic eye deviation. Neuro-ophtalmology, 1993, 13 (1):39-44.
9. Tijssen CC, Kort PLM, Bastiaensen LAK, et al. Epileptic eye deviation and nystagmus. Clinical Neurology & Neurosurgery, 1992, 94(1):77.
10. Kaplan PW, Lesser RP. Vertical and horizontal epileptic gaze deviation and nystagmus.Neurology, 1989, 39(6):1391-1393.
11. Schulz R. Epileptic monocular nystagmus and ictal diplopia as cortical and subcortical dysfunction. Epilepsy and Behavior Case Reports, 2013, 22(6):89-91.
12. Munari C, Bonis A, Kochen S, et al. Eye movement and occipital seizures in man. Acta Neurochirurgia, 1984, 31(Suppl. 33):47-52.
13. Harris CM, Boyd S, Chong K, et al. Epileptic nystagmus in infancy.Journal of Neurological Sciences, 1997, 151(22):111-114.
14. Sun-Uk Lee, Hong-Il Suh, Jun Young Choi, et al. Epileptic nystagmus:a case report and systematic review. Epilepsy and Behavior Case Reports, 2014, 2(2):156-160.
15. Kellinghus C, Skidmore C, Loddenkemper T. Lateralizing value of epileptic nystagmus. Epilepsy and Behavior, 2008, 13 (4):700-702.
16. Robillard A, Saint-Hilaire JM, Mercier M, et al. The lateralizing and localizing value of adversion in epilepticseizures. Neurology, 1983, 32(2):1241-1242.
17. Wyllie E, Lüders H, Morris HH, et al. The lateralizing significance of versive head and eye movementsduring epileptic seizures.Neurology, 1986, 36(12):606-611.
18. McLachlan RS. The significance of head and eye turning in seizures. Neurology, 1987, 37(5):1617-1619.
19. Ajmone Marsan C, Goldhammer L. Clinical ictal patterns and electrographic data in cases of partial seizures of frontalcentral-parietal-origin. In:Brazier MAB (editor):Epilepsy, its Phenomena in Man. New York:Academic Press 1973:235-258.
20. King DW, Ajmone Marsan C. Clinical features and ictal patterns in epileptic patients with EEG temporal lobe foci. Ann Neurol, 1977, 2(3):138-147.
21. Rosenbaum DH, Siegel M, Rowan AJ. Contraversive seizures in occipital epilepsy:Case report and review of theliterature. Neurology, 1986, 36(3):281-284.
22. Lynch JC. Oculomotor control:anatomical pathways. In:Squire LR, Encyclopedia of Neuroscience. Elsevier Press, 2001:368-422.
23. Bruce CJ, Friedman HR. Eye movement. In:Ramachandran VS, Encyclopedia of the human brain.New York:Academic Press, 2002:810-958.
24. Krauzlis RJ. Recasting the smooth pursuit eye movement syetem. Journal of Neurophysiology, 2004, 92(6):591-603.
25. Chauvel P, McGonigal A. Emergence of semiology in epileptic seizures. Epilepsy & Behavior, 2014, 32(5):132-138.
26. Garcia-Pastor A, Lopez-Estean P, Peraita-Adrados R. Epileptic nystagmus:a case study video-EEG correlation. Epileptic disorder, 2002, 4(2):23-27.
27. Kaplan PW, Tusa RJ. Neurophysiologic and clinical correlation of epileptic nystagmus. Neurology, 1993, 43(11):2508-2514.
28. Weber Y, Roesche J, Lerche H. Epileptic nystagmus:Two case reports, clinical and pathophysiological review of the literature. Journal of Neurology, 2006, 253(4):767-771.
29. Pierrot-Deseilligny C, Müri RM, Ploner CJ, et al. Cortical control of ocular saccades in humans:a model for motricity. Progress in Brain Research, 2003, 142(5):3-17.
30. Hansraj R. Pursuit eye movement:a review. S Afr Optom, 2008, 67(4):160-165.
31. Schall JD. Frontal eye fields. In:Squire LR, Encyclopedia of Neuroscience. Elsevier Press.2009:367-374.
32. Pierrot-Deseilligny C, Milea D, Müri RM. Eye movement control by the cerebral cortex. Current Opinion in Neurology, 2004, 17(4):17-25.
33. Andersen RA, Brotchie PR, Mazzoni P. Evidence for the lateral intraparietal area as the parietal eye field. Current Opinion in Neurobiology, 1992, 2(3):840-846.
34. Grefkes C, Fink GR. The functional organization of the intraparietal sulcus in human and monkeys. J Anat, 2005, 207(7):3-17.
35. Kurylo DD, Skavenski AA. Eye movements elicited by electrical stimulationof area PG in the monkey. J Neurophysiol, 1991, 65(5):1243-1253.
36. Krauzlis RJ. Recasting the smooth pursuit eye movement system. Journal of Neurophysiology, 2004, 91(7):591-603.
37. Caminiti R, Innocenti GM, Battaglia-Mayer A. Organization and evolution of parieto-frontal processing streams in macaque monkeys and humans. Neuroscience and Biobehavioral Reviews, 2015, 21(3):73-96.
38. Huk AC, Robert F, Dougherty, et al. Retinotopyand functionalsubdivisionof human areas MT and MST. Society for Neuroscience, 2002, 22(16):7195-7205.
39. Desimone R, Ungerleider LG. Multiple visual areas in the caudal superior temporal suclus of the macaque. Journal of Comparative Neurology, 1986, 248(11):164-189.
40. Komatsu H, Wurtz RH. Relation of cortical areas MT and MST to pursuit eye movements. I. Localization and visual properties of neurons. Journal of Neurophysiology, 1988, 60(1):580-603.
41. Newsome WT, Wurtz RH, Dürsteler MR, et al. Deficits in visual motion processing followingibotenic acid lesions of the middle temporal visual area of the macaque monkey. Journal of Neuroscience, 1985, 5(3):825-840.
42. Dürsteler MR, Wurtz RH. Pursuit and optokinetic deficits following chemical lesions of cortical areas MT and MST.Journal of Neurophysiology, 1988, 60(10):940-965.
43. Salzman CD, Murasugi CM, Britten KH, et al. Microstimulation in visual area MT:effects on derection discrimination performance. Journal of Neuroscience, 1992, 12(6):2331-2355.
44. Duffy CJ, Wurtz RH. Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. Journalof Neurophysiology, 1991, 65(4):1329-1345.
45. Lynch JC, Tian JR. Cortico-cortical networks and cortico-subcortical loops for the higher control of eye movements. In Progress in Brain Research, 2006, 151(4):461-501.
46. Dukelow SP, De Souza JF, Culham JC, et al. Distinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements. Journal of Neurophysiology, 2001, 86(10):1991-2000.
47. Huk AC, Robert F, Dougherty, et al. Retinotopy and functional subdivision of human areas MT and MST. Society for Neuroscience, 2002, 22(16):7195-7205.
48. Malikovic A, Amunts K, Schleicher A, et al. Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT+:a probabilistic, stereotaxic map of area hOc5. Cerebral cortex, 2007, 17(7):562-574.
49. Ungerleider LG, Haxby JV. 'What' and 'Where、 in the human brain. Current Opinion in Neurobiology, 1994, 4(10):157-165.
50. Galletti C, Fattori P, Kutz DF, et al. Brain locationand visual topography of cortical area V6A in the macaquemonkey. European Journal of Neuroscience, 1999, 11(9):575-582.
51. Rizzolatti G, Matelli M. Two different streams form the dorsal visual system:anatomy and functions. Exp Brain Res, 2003, 153(8):146-157.
52. Luppino G, Hamed SB, Gamberini M, et al. Occipital (V6) and pareiatal (V6A) areas in the anterior wall of the parieto-occipital sucluc of the maaque:a cytoarchitectonic study. European Journal of Neuroscience, 2005, 21(8):3056-3076.
53. Gamberini M, Passarelli L, Fattori P, et al. Cortical connections of the visuomotor parietooccipital area V6Ad of the macaque monkey. The Journal of Camparative Neurology, 2009, 513(3):622-624.
54. Averbeck BB, Battaglia-Mayer A, Guglielmo C, et al. Statistical analysis of parieto-frontal cognitive-motor networks. Journal of Neurophysiology, 2009, 102(11):1911-1920.
55. Caminiti R, Innocenti GM, Battaglia-Mayer A. Organization and evolution of parieto-frontal processing streams in macaque monkeys and humans. Neuroscience and Biobehavioral Reviews, 2015, 21(7):73-96.