癫痫杂志

癫痫杂志

多模态磁共振成像在儿童癫痫中的研究应用

查看全文

癫痫是常见的神经系统疾病,病理生理机制复杂,一部分患者难以找到病因。核磁共振成像(MRI)是癫痫诊断,尤其在癫痫灶定位方面的一项重要的影像学技术。随着功能磁共振技术(fMRI)的不断进步,在癫痫的诊治中日益突出,可以从生化微结构水平及脑网络方面探讨其发病机制,对明确病因具有重要意义,从而有助于实施个体化精准治疗,文章综述了近年来多模态 MRI 技术在癫痫领域的应用。

关键词: 癫痫; 弥散张量成像; 扩散峰度成像; 神经突方向离散度和密度成像; 动脉自旋标记灌注成像; 磁共振波谱成像

引用本文: 杨伟明, 孙丹, 刘智胜. 多模态磁共振成像在儿童癫痫中的研究应用. 癫痫杂志, 2018, 4(5): 406-410. doi: 10.7507/2096-0247.20180067 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
1. Winston GP. The potential role of novel diffusion imaging techniques in the understanding and treatment of epilepsy. Quant Imag Med Surg, 2015, 5(2): 279-287.
2. Widjaja E, Geibprasert S, Otsubo H, et al. Diffusion tensor imaging assessment of the epileptogenic zone in children with localization-related epilepsy. Am J Neuroradiol, 2011, 32(10): 1789-1794.
3. Widjaja E, Kis A, Go C, et al. Abnormal white matter on diffusion tensor imaging in children with new-onset seizures. Epilepsy Res, 2013, 104(1-2): 105-111.
4. Bao Y, He R, Zeng Q, et al. Investigation of microstructural abnormalities in white and gray matter around hippocampus with diffusion tensor imaging (DTI) in temporal lobe epilepsy (TLE). Epilepsy Behav, 2018, 83: 44-49.
5. Prayer D, Barkovich AJ, Kirschner DA, et al. Visualization of non structural changes in early white matter development on diffusion weighted MR images: evidence supporting premyelinationanisotropy. Am J Neuroradiol, 2001, 22(8): 1572-1576.
6. Slinger G, Sinke MRT, Braun KPJ, et al. White matter abnormalities at a regional and voxel level in focal and generalized epilepsy: A systematic review and meta-analysis. Neuroimage Clin, 2016, 12: 902-909.
7. Mueller SG, Laxer KD, Cashdollar N, et al. Identification of abnormal neuronal metabolism outside the seizure focus in temporal lobe epilepsy. Epilepsia, 2004, 45(4): 355-366.
8. Jr EJ, Thompson PM, Stern JM, et al. Connectomics and epilepsy. Curr Opin Neurol, 2013, 26(2): 186-194.
9. Chiang S, Levin HS, Wilde E, et al. White matter structural connectivity changes correlate with epilepsy duration in temporal lobe epilepsy. Epilepsy Res, 2016, 120: 37-46.
10. Liu Z, Xu Y, An J, et al. Altered brain white matter integrity in temporal lobe epilepsy: A TBSS study. J Neuroimaging, 2015, 25(3): 460-464.
11. Ahmadi ME, Hagler DJ, McDonald CR, et al. Side matters: diffusion tensor imaging tractography in left and right temporal lobe epilepsy. Am J Neuroradiol, 2009, 30(9): 1740-1747.
12. Lin JJ, Salamon N, Lee AD, et al. Reduced neocortical thickness and complexity mapped in mesial temporal lobe epilepsy with hippocampal sclerosis. Cereb Cortex, 2007, 17(9): 2007-2018.
13. Otte WM, van Eijsden P, Sander JW, et al. A meta-analysis of white matter changes in temporal lobe epilepsy as studied with diffusion tensor imaging. Epilepsia, 2012, 53(4): 659-667.
14. Concha L, Kim H, Bernasconi A, et al. Spatial patterns of water diffusion along white matter tracts in temporal lobe epilepsy. Neurology, 2012, 79(5): 455-462.
15. Kelm ND, West KL, Carson RP, et al. Evaulation of diffusion kurtosis imaging in ex vivo hypomyelinated mouse brains. NeuroImage, 2016, 124: 612-626.
16. Steven AJ, Zhuo J, Melhem ER. Diffusion kurtosis imaging: an emerging technique for evaluating the microstructural environment of the brain. Am J Roentgenol, 2014, 202(1): W26-33.
17. Zhang Y, Yan X, Gao Y, et al. A preliminary study of epilepsy in children using diffusional kurtosis imaging. Clin Neuroradiol, 2013, 23(4): 293-300.
18. Lee CY, Tbesh A, Spampinato MV, et al. Diffusion kurtosis imaging reveals a distinctive pattern of microstructural alternations in idiopathic generalized epiepsy. Acta Neurol Scand, 2014, 130(3): 48-155.
19. Zhang Y, Gao Y, Zhou M, et al. A diffusional kurtosis imaging study of idiopathic generalized epilepsy with unilateral interictal epileptiform discharges in children. J Neuroradiol, 2016, 43(5): 339-345.
20. 薛冰, 于兵, 黄明珠, 等. 神经突方向分散度和密度成像技术的应用进展. 中国临床医学影像杂志, 2017, 28(12): 896-898.
21. 邵涵钰. 利用新型扩散成像技术研究年老对大脑微观结构的影响. 磁共振成像, 2016, 7(3): 218-225.
22. Téllezzenteno JF, Hernández RL, Moienafshari F, et al. Surgical outcomes in lesional and non-lesional epilepsy: A systematic review and meta-analysis. Epilepsy Res, 2010, 89(2): 310-318.
23. Fauser S, Sisodiya SM, Martinian L, et al. Multi-focal occurrence of cortical dysplasia in epilepsy patients. Brain A J Neurol, 2009, 132(8): 2079-2090.
24. Barkovich AJ, Dobyns WB, Guerrini R. Malformations of cortical development and epilepsy. Neuropediatrics, 2005, 5(5): 2-11.
25. Peng S, Vayenas N. Maintainability analysis of underground mining equipment using genetic algorithms: case studies with an lhd vehicle. J Min, 2014, 2014(1): 1-10.
26. Zhang H, Schneider T, Wheeler-Kingshott CA, et al. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage, 2012, 61(4): 1000-1016.
27. Winston GP, Micallef C, Symms MR, et al. Advanced diffusion imaging sequences could aid assessing patients with focal cortical dysplasia and epilepsy. Epilepsy Res, 2014, 108(2): 336-339.
28. Rostampour M, Hashemi H, Najibi SM, et al. Detection of structural abnormalities of cortical and subcortical gray matter in patients with MRI-negative refractory epilepsy using neurite orientation dispersion and density imaging. Physica Medica, 2018, 48: 47-54.
29. Chen TY, Chiu L, Wua TC, et al. Arteial spin-labeling inroutine clinical practice: a preliminary experience of 200 cases and correlation with MRI and clincial findings. Clin Imag, 2012, 36: 345-352.
30. Urbach H. Imaging of the epilepsies. Eur Radio, 2005, 15(3): 495-500.
31. Takanashi J, Oba H, Barkovich AJ, et al. Diffusion MRI abnormalities after prolonged febrile seizures with encephalopathy. Neurology, 2006, 66(9): 1304-1309.
32. Kuya K, Fujii S, Miyoshi F, et al. A case of acute encephalopathy with biphasic seizures and late reduced diffusion: Utility of arterial spin labeling sequence. Brain Dev, 2016, 39(1): 84-88.
33. Kamijo Y, Soma K, Kondo R, et al. Transient diffuse cerebral hypoperfusion in Tc-99m HMPAO SPECT of the brain during withdrawal syndrome following acute barbiturate poisoning. Vet Hum Toxicol, 2002, 44(6): 348-350.
34. Dierckx RA, Melis K, Dom L, et al. Technetium-99m hexamethylpropylene amine oxime single photon emission tomography in febrile convulsions. EurJNucl Med, 1992, 19(4): 278-282.
35. Wolf RL, Alsop DC, Levy-Reis I, et al. Detection of mesial temporal lobe hypoperfusion in patients with temporal lobe epilepsy by use of arterial spin labeled perfusion MRimaging. Am J Neuroradiol, 2001, 22(7): 1334-1341.
36. 沈连芳, 张志强, 王正阁, 等. 脑灌注磁共振成像观察内侧颞叶癫痫病部分及继发全面发作. 中国医学影像技术, 2012, 28(4): 626-629.
37. Caruso PA, Johnson J, Thibert R, et al. The use of magnetic resonance spectroscopy in the evaluation of epilepsy. Neuroimag Clin N Am, 2013, 23(3): 407-424.
38. Blümcke I. Neuropathology of focal epilepsies: A critical review. Epilepsy Behav, 2009, 15(1): 34-39.
39. Obata T, Someya Y, Suhara T, et al. Neural damage due to temporal lobe epilepsy: dual-nuclei (proton and phosphorus) magnetic resonance spectroscopy study. Psychiatry Clin Neurosci, 2004, 58(1): 48-53.
40. Xu MY, Ergene E, Zagardo M, et al. Proton MR spectroscopy in patients with structural MRI-negative temporal lobe epilepsy. J Neuroimaging, 2015, 25(6): 1030-1037.
41. Swartz BE, Spitz J, Vu AL, et al. Heterogeneity of anatomic regions by MR volumetry in juvenile myoclonic epilepsy. Acta Neurol Scand, 2016, 134(4): 300-308.
42. Jiang S, Cheng L, Liu Z, et al. Altered local spontaneous brain activity in juvenile myoclonic epilepsy: A preliminary resting-state fMRI study. Neural Plast, 2016, 5: 1-7.
43. Lin K, Jr HC, Lin J, et al. Magnetic resonance spectroscopy reveals an epileptic network in juvenile myoclonic epilepsy. Epilepsia, 2009, 50(5): 1191-1200.
44. Zhang L, Li H, Hong P, et al. Proton magnetic resonance spectroscopy in juvenile myoclonic epilepsy: A systematic review and meta-analysis. Epilepsy Res, 2016, 121: 33-38.