癫痫杂志

癫痫杂志

立体脑电图颅内电极植入的准确性:系统评价和 Meta 分析

查看全文

立体脑电图(SEEG)是一种将电极植入大脑以帮助确定致痫灶的操作。它是在非侵入性检查不能确定致痫灶的情况下,对耐药性局灶性癫痫患者进行明确的癫痫手术之前进行的。这项操作的主要风险是出血,发生率为 1%~2%,可能原因是电极放置不准确,或者计划的植入电极损伤了在术前血管成像中未检测到的血管。推荐的电极植入技术包括:使用立体定向框架、无框架影像导航系统、机器人导航系统和定制的患者固定装置。研究参照系统评价和 Meta 分析推荐报告条目(Preferred reporting items for systematic reviews and Meta-analysis,PRISMA),结构化搜索 PubMed、Embase 和 Cochrane 数据库,纳入的研究涉及:①SEEG 电极植入作为术前工作的一部分;② 针对耐药性局灶性癫痫患者;③ 提供准确数据。数据库检索出 326 篇文章,删除重复和非英语语言的研究后,筛选出 293 篇文章。应用纳入和排除标准后,最终有 15 项研究纳入定性和定量分析。利用随机效应的元分析和技术分层,最终总结出 SEEG 电极植入的准确性。发表有关 SEEG 植入技术的准确性文献有限。目前并没有比较不同 SEEG 植入技术的前瞻性对照临床试验。在已确定的研究之间存在显著的系统异质性,妨碍了各项技术之间有意义的比较。最近引进的机器人导航系统被认为提供了一种更精确的植入方法,但支持证据仅限于 3 级。在将新技术引入进行广泛临床应用之前,有必要通过良好设计、方法合理的研究将新技术与以前的“金标准”进行比较。

关键词: 机器人; 耐药; 立体框架; 立体脑电图; 致痫灶

引用本文: Vejay N.Vakharia, RachelSparks, Aidan G.O’Keeffe, 李维 译, 高慧 慕洁 审. 立体脑电图颅内电极植入的准确性:系统评价和 Meta 分析. 癫痫杂志, 2018, 4(5): 436-445. doi: 10.7507/2096-0247.20180072 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Talairach J, Bancaud J, Bonis A, et al. Functional stereotaxic exploration of epilepsy. ConfinNeurol, 1962, 22: 328-331.
2. Lüders HO, Najm I, Nair D, et al. The epileptogenic zone: general principles. Epileptic Disord, 2006, 8(Suppl. 2): 1-9.
3. National Institute for Health and Clinical Excellence, Excellence NI for H and C. The Epilepsies: the diagnosis and management of the epilepsies in adults and children in primary and secondary care. Chapter 4 Guid, 2012: 57-83.
4. De Tisi J, Bell GS, Peacock JL, et al. The long-term outcome of adult epilepsy surgery, patterns of seizure remission, and relapse: a cohort study. Lancet, 2011, 378(9800): 1388-1395.
5. Enatsu R, Mikuni N. Invasive evaluations for epilepsy surgery: a review of the literature. Neurol Med Chir (Tokyo), 2016, 56(5): 221-227.
6. Mullin JP, Shriver M, Alomar S, et al. Is SEEG safe? A systematic review and meta-analysis of stereo-electroencephalography-related complications. Epilepsia, 2016, 57(3): 386-401.
7. Zuluaga MA, Rodionov R, Nowell M, et al. Stability, structure and scale: Improvements in multi-modal vessel extraction for SEEG trajectory planning. Int J Comput Assist RadiolSurg, 2015, 10(8): 1227-1237.
8. Cardinale F, Pero G, Quilici L, et al. Cerebral angiography for multimodal surgical planning in epilepsy surgery: description of a new three-dimensional technique and literature review. World Neurosurg, 2015, 84(2): 358-367.
9. Nowell M, Rodionov R, Zombori G, et al. A pipeline for 3D multimodality image integration and computer-assisted planning in epilepsy surgery. J Vis Exp, 2016, 1(111): 136-145.
10. Nowell M, Sparks R, Zombori G, et al. Comparison of computer-assisted planning and manual planning for depth electrode implantations in epilepsy. J Neurosurg, 2016, 124(6): 1820-1828.
11. Cardinale F, Cossu M, Castana L et al. Stereoelectroencephalography: surgical methodology, safety, and stereotactic application accuracy in 500 procedures. Neurosurgery, 2013, 72(3): 353-366.
12. Cardinale F, Casaceli G, Raneri F, et al. Implantation of stereoelectroencephalography electrodes. J ClinNeurophysiol, 2016, 33(6): 490-502.
13. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol, 2009, 62(10): e1-34.
14. Slim K, Nini E, Forestier D, et al. Methodological index for non-randomized studies (Minors): development and validation of a new instrument. Anz J Surg, 2003, 73(9): 712-716.
15. Gonzalez-Martinez J, Bulacio J, Alexopoulos A, et al. Stereoelectroencephalography in the ‘difficult to localize’ refractory focal epilepsy: early experience from a North American epilepsy center. Epilepsia, 2013, 54(2): 323-330.
16. Balanescu B, Franklin R, Ciurea J, et al. A personalized stereotactic fixture for implantation of depth electrodes in stereoelectroencephalography. Stereotact Funct Neurosurg, 2014, 92(2): 117-125.
17. Narvaez-Martinez Y, Garcia S, Roldan P, et al. Stereoelectroencephalography by using O-Arm(R) and Vertek(R) passive articulated arm: technical note and experience of an epilepsy referral centre. Neurocirugia (Astur), 2016, 27(6): 277-284.
18. Davies KG, Phillips BL, Hermann BP. MRI confirmation of accuracy of freehand placement of mesial temporal lobe depth electrodes in the investigation of intractable epilepsy. Br J Neurosurg, 1996, 10(2): 175-178.
19. Van Roost D, Solymosi L, Schramm J, et al. Depth electrode implantation in the length axis of the hippocampus for the presurgical evaluation of medial temporal lobe epilepsy: a computed tomography-based stereotactic insertion technique and its accuracy. Neurosurgery, 1998, 43(4): 819-826.
20. Ortler M, Sohm F, Eisner W, et al. Frame-based vs frameless placement of intrahippocampal depth electrodes in patients with refractory epilepsy: a comparative in vivo (application) study. Neurosurgery, 2011, 68(4): 881-887.
21. Hou Z, Chen X, Shi X, et al. Comparison of neuronavigation and frame-based stereotactic system in implanting epileptic depth electrodes. Turk Neurosurg, 2014, 26(16): 1-8.
22. González-Martínez J, Bulacio J, Thompson S, et al. Technique, results, and complications related to robot-assisted stereoelectroencephalography. Neurosurgery, 2016, 78(2): 169-179.
23. Dorfer C, Minchev G, Czech T, et al. A novel miniature robotic device for frameless implantation of depth electrodes in refractory epilepsy. J Neurosurg, 2016, 126(5): 1662-1628.
24. Nowell M, Rodionov R, Diehl B, et al. A novel method for implementation of frameless stereoeeg in epilepsy surgery. Neurosurgery, 2014, 10(4): 525-534.
25. Verburg N, Baayen JC, Idema S, et al. In vivo accuracy of a frameless stereotactic drilling technique for diagnostic biopsies and stereoelectroencephalography depth electrodes. World Neurosurg, 2016, 87: 392-398.
26. Roessler K, Sommer B, Merkel A, et al. A frameless stereotactic implantation technique for depth electrodes in refractory epilepsy utilizing intraoperative MR imaging. World Neurosurg, 2016, 62(5): 231-250.
27. Mehta AD, Labar D, Dean A, et al. Frameless stereotactic placement of depth electrodes in epilepsy surgery. J Neurosurg, 2005, 102(6): 1040-1045.
28. Meng F, Ding H, Wang G. A stereotaxic image-guided surgical robotic system for depth electrode insertion. Conf Proc. AnnuInt Conf IEEE Eng Med BiolSoc IEEE Eng Med Biol Soc Annu Conf, 2014, 2014: 6167-6170.
29. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med, 2009, 6(7): e1000097.
30. Munyon CN, Koubeissi MZ, Syed TU, et al. Accuracy of frame-based stereotactic depth electrode implantation during craniotomy for subdural grid placement. StereotactFunctNeurosurg, 2013, 91(6): 399-403.
31. Mascott CR. In vivo accuracy of image guidance performed using optical tracking and optimized registration. J Neurosurg, 2006, 105(4): 561-567.